Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Bernardes, Diego Guerreiro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3139/tde-17072019-104836/
|
Resumo: |
Neste trabalho é apresentado um sistema autônomo de gestão de carteiras que utiliza Redes Neurais Artificiais para monitoramento do mercado e o modelo de Black-Litterman para otimização da alocação de patrimônio. O sistema analisa as dez ações mais negociadas do índice Bovespa, com redes neurais dedicadas a cada ação, e prevê estimativas de variações de preços para um dia no futuro a partir de indicadores da análise técnica. As estimativas das redes são então inseridas em um otimizador de carteiras, que utiliza o modelo de Black-Litterman, para compor carteiras diárias que empregam a estratégia Long and Short. Os resultados obtidos são comparados a um segundo sistema de trading autônomo, sem o emprego da otimização de carteiras. Foram observados resultados com ótimo índice de Sharpe em comparação ao Benchmark. Buscou-se, assim, contribuir com evidências a favor da utilização de modelos de inferência bayesiana utilizados junto à técnicas quantitativas para a gestão de patrimônio. |