Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Selvatici, Antonio Henrique Pinto |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-01072009-153749/
|
Resumo: |
Como a complexidade das tarefas realizadas por robôs móveis vêm aumentando a cada dia, a percepção do robô deve ser capaz de capturar informações mais ricas do ambiente, que permitam a tomada de decisões complexas. Entre os possíveis tipos de informação que podem ser obtidos do ambiente, as informações geométricas e semânticas têm papéis importantes na maioria das tarefas designadas a robôs. Enquanto as informações geométricas revelam como os objetos e obstáculos estão distribuídos no espaço, as informações semânticas capturam a presença de estruturas complexas e eventos em andamento no ambiente, e os condensam em descrições abstratas. Esta tese propõe uma nova técnica probabilística para construir uma representação do ambiente baseada em objetos a partir de imagens capturadas por um robô navegando com uma câmera de vídeo solidária a ele. Esta representação, que fornece descrições geométricas e semânticas de objetos, é chamada O-Map, e é a primeira do gênero no contexto de navegação de robôs. A técnica de mapeamento proposta é também nova, e resolve concomitantemente os problemas de localização, mapeamento e classificação de objetos, que surgem quando da construção de O-Maps usando imagens processadas por detectores imperfeitos de objetos e sem um sensor de localização global. Por este motivo, a técnica proposta é chamada O-SLAM, e é o primeiro algoritmo que soluciona simultaneamente os problemas de localização e mapeamento usando somente odometria e o resultado de algoritmos de reconhecimento de objetos. Os resultados obtidos através da aplicação de O-SLAM em imagens processadas por uma técnica simples de detecção de objetos mostra que o algoritmo proposto é capaz de construir mapas que descrevem consistentemente os objetos do ambiente, dado que o sistema de visão computacional seja capaz de detectá-los regularmente. Em particular, O-SLAM é eficaz em fechar voltas grandes na trajetória do robô, e obtém sucesso mesmo se o sistema de detecção de objetos posuir falhas, relatando falsos positivos e errando a classe do objeto algumas vezes, consertando estes erros. Dessa forma, O-SLAM é um passo em direção à solução integrada do problema de localização, mapeamento e reconhecimento de objetos, a qual deve prescindir de um sistema pronto de reconhecimento de objetos e gerar O-Maps somente pela fusão de informações geométricas e visuais obtidas pelo robô. |