Desenvolvimento de um modelo para predição da função renal imediata e função retardada do enxerto após transplante renal com doador falecido utilizando diferentes algoritmos de machine learning

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Quinino, Raquel Martins e
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/5/5148/tde-02052022-100110/
Resumo: Introdução: O transplante renal é considerado o melhor tratamento para a doença renal crônica em estadio 5 e a maior parte deles é realizada com rins de doadores falecidos. Após o transplante esses rins evoluem de diferentes formas: desde excelente função renal imediata (FRI) até função retardada do enxerto (FRE), com necessidade de diálise. Pacientes que não evoluem com FRI apresentam piores desfechos relacionados à sobrevida do enxerto, incidência de rejeição aguda, permanência hospitalar e custos. Existem vários modelos descritos na literatura para predição da função retardada do enxerto (FRE) por estatística convencional e machine learning (ML), porém não há nenhuma referência a modelos preditivos para FRI. Este estudo se propõe a avaliar diferentes tipos de algoritmos por ML para predição da FRI e FRE. Métodos: foram analisados retrospectivamente dados de pacientes submetidos a transplante renal com doador falecido no Serviço de Transplante Renal do Hospital das Clínicas da Universidade de São Paulo (HC-FMUSP), entre 01 de janeiro de 2010 e 31 de dezembro de 2019. Definiram-se três grupos de acordo com a recuperação da função renal: Função Renal Imediata (FRI) - redução da creatinina sérica 10% em dois dias consecutivos; Função Lenta do Enxerto (FLE)- redução da creatinina sérica < 10% em dois dias consecutivos, mas sem necessidade de diálise na primeira semana; e Função Retardada do Enxerto (FRE): necessidade de diálise na primeira semana após o transplante renal. O conjunto de treino correspondeu a 70% dos pacientes e teste 30%. Seis algoritmos foram utilizados: Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Gradient Boosting Classifier(GBC), CatBoost Classifier, AdaBoost Classifier e Random Forest Classifier. A análise de desempenho no conjunto de teste foi realizada utilizando a AUC-ROC, sensibilidade, especificidade, valor preditivo positivo (VPP), valor preditivo negativo (VPN) e F1 score. Resultados: Foram analisados 859 pacientes, sendo 186 (21,65%) FRI, 248 (28,87%) FLE e 425 (49,48%) FRE. Para a predição da FRI o algoritmo que obteve o melhor desempenho foi o XGBoost, com AUC-ROC- 0,76 (IC 95%: 0,69 - 0,82), sensibilidade de 0,75, especificidade de 0,64, VPP de 0,37 e VPN de 0,90. As variáveis preditoras para o evento FRI em ordem decrescente de relevância foram creatinina final, idade e pressão arterial média do doador, KDRI e diurese do doador. O resultado preditivo obtido para a FRE não foi satisfatório. Conclusões: utilizando técnicas de ML, foram comparados seis algoritmos e obteve-se um bom modelo preditivo para FRI, porém as variáveis estudadas não foram capazes de predizer de forma satisfatória o evento FRE. O algoritmo de melhor desempenho para a predição da FRI foi o XGBoost e as variáveis preditoras de maior importância são relacionadas ao doador. O modelo preditivo apresentado neste estudo pode auxiliar na quantificação de risco para ensaios clínicos, identificando os pacientes com melhor prognóstico para a recuperação da função renal após o transplante