Variedades sub-riemannianas de contato de dimensao 3

Detalhes bibliográficos
Ano de defesa: 1996
Autor(a) principal: Diniz, Marcos Monteiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-011929/
Resumo: Nesse trabalho, introduzimos a nocao de variedades sub-riemannianas de contato e estudamos o caso de dimensao 3. Os conceitos de fibrado de circulo, conexao e transporte paralelo sao dados e as equacoes de estrutura, definidas. Provamos a existencia e unicidade da forma de conexao sub-riemanniana e apresentamos as identidades de bianchi. Seguem entao alguns calculos relacionados aos exemplos classicos 'H POT.3', 'S POT.3' e 'Q POT.3'. O teorema de existencia e unicidade e apresentado em termos de conexao adaptada 'DELTA' em m e a relacao 'DELTA' e o transporte paralelo e rapidamente discutido. Finalmente, definimos variedades homogeneas e provamos o principal resultado - os teoremas de classificacao para variedades sub-riemannianas de contato, homogeneas, simplesmente conexas, de dimensao 3- fornecendo uma lista dos modelos