Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Fernandes, Alexandre Gastaldi Lopes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/100/100131/tde-02122019-150538/
|
Resumo: |
Na busca por eficiência e competitividade, organizações precisam monitorar e avaliar constantemente os processos que são vitais para atingir seus objetivos. A mineração de processos busca apoiar essas iniciativas, provendo novas formas de descoberta, monitoramento e análise dos processos de negócio. Em particular, o monitoramento preditivo de processos propõe mecanismos que permitem antecipar e prevenir situações não desejadas, sendo uma das aplicações de maior interesse a predição do tempo de resolução de um caso em execução. Apesar de muitos estudos terem mostrado resultados promissores nessa linha, um problema que ainda não foi atacado diretamente é o impacto de casos que não estão no modelo, ou casos non-fitting. Este trabalho propõe o uso de técnicas de busca por similaridade para tratar casos non-fitting em um método de predição de tempo de resolução de incidentes, baseado em mineração de processos. Partindo de um método existente e usando um conjunto de dados extraído de um cenário real de mercado, o estudo inicialmente avaliou o impacto dos casos non-fitting sobre a assertividade do preditor em cenários em que múltiplos atributos são usados na geração do modelo. Posteriormente, o mesmo conjunto de dados foi submetido ao método alterado com a inclusão das técnicas de busca por similaridade, comprovado pelo desempenho do preditor. Também foram incorporadas algumas melhorias adicionais ao método final: a normalização do conjunto de dados; a geração de atributos de contexto a partir de atributos temporais, visando incluir a perspectiva de sazonalidade ao modelo; e, por último, uma adaptação da fase de validação para utilizar a técnica de holdout |