Effective and unsupervised fractal-based feature selection for very large datasets: removing linear and non-linear attribute correlations

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Fraideinberze, Antonio Canabrava
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17112017-154451/
Resumo: Given a very large dataset of moderate-to-high dimensionality, how to mine useful patterns from it? In such cases, dimensionality reduction is essential to overcome the well-known curse of dimensionality. Although there exist algorithms to reduce the dimensionality of Big Data, unfortunately, they all fail to identify/eliminate non-linear correlations that may occur between the attributes. This MSc work tackles the problem by exploring concepts of the Fractal Theory and massive parallel processing to present Curl-Remover, a novel dimensionality reduction technique for very large datasets. Our contributions are: (a) Curl-Remover eliminates linear and non-linear attribute correlations as well as irrelevant attributes; (b) it is unsupervised and suits for analytical tasks in general not only classification; (c) it presents linear scale-up on both the data size and the number of machines used; (d) it does not require the user to guess the number of attributes to be removed, and; (e) it preserves the attributes semantics by performing feature selection, not feature extraction. We executed experiments on synthetic and real data spanning up to 1.1 billion points, and report that our proposed Curl-Remover outperformed two PCA-based algorithms from the state-of-the-art, being in average up to 8% more accurate.