Ensemble de técnicas de representação simbólica para reconhecimento biométrico baseado em sinais de ECG

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Passos, Henrique dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-18072018-105824/
Resumo: Métodos de identificação de pessoas sempre foram muito importantes para toda a sociedade. Atualmente, as pesquisas em biometria vêm sendo amplamente incentivadas por diversos setores da indústria mundial com o objetivo de melhorar ou substituir os atuais sistemas de segurança e de identificação de pessoas. O campo da biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de diversas características físicas e/ou comportamentais do ser humano. Diversas modalidades biométricas têm sido propostas para reconhecimento de pessoas, como impressão digital, íris, face e fala. Estas modalidades biométricas possuem características distintas em termos de desempenho, mensurabilidade e aceitabilidade. Uma questão a ser considerada com a aplicação biométrica é sua robustez a ataques por circunvenção, repetição e ofuscação. Esses ataques estão se tornando cada vez mais frequentes e questionamentos estão sendo levantados a respeito dos níveis de segurança das formas de reconhecimento. Sinais biomédicos como eletrocardiograma (ECG), eletroencefalograma (EEG) e eletromiograma (EMG) têm sido cada vez mais estudados e aplicados ao reconhecimento biométrico. Em específico, os sinais de ECG têm sido largamente adotados para o reconhecimento biométrico em diversos trabalhos. Por outro lado, análise de séries temporais tem sido usada com sucesso em muitas diferentes aplicações para identificar padrões temporais nos dados. Embora dinâmica simples possa ser observada com ferramentas analíticas tradicionais tais como transformada de fourier, transformada wavelet, a representação simbólica pode melhorar a análise de processos que são complexos e possivelmente caótico. Além disso, representação simbólica pode também reduzir a sensibilidade a ruído e melhorar bastante a eficiência computacional. No entanto, existem aspectos estruturais e paramétricos de projeto que podem conduzir a uma degradação de desempenho. Na ausência de uma metodologia sistemática e de baixo custo para a proposição de técnicas de representação simbólicas otimamente especificadas, os comitês de máquinas, mais especificamente ensemble, se apresentam como alternativas promissoras. Neste estudo, os componentes do ensemble, que correspondem as técnicas de representação simbólicas, e seus respectivos parâmetros foram selecionados via algoritmos evolutivos. O objetivo é explorar conjuntamente potencialidades advindas das técnicas de representação simbólicas e comitê de máquinas para reconhecimento biométrico baseado em sinais de ECG. Resultados experimentais conduzidos sobre dois conjuntos de dados disponíveis publicamente indicam que a abordagem proposta pode melhorar o desempenho do reconhecimento quando comparada com as técnicas tradicionais