Padrões mapeados localmente em multiescala aplicados ao reconhecimento de faces

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Silva, Eduardo Machado
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/154142
Resumo: O Reconhecimento facial é uma das tecnologias biométricas mais utilizadas em sistemas automatizados que necessitam garantir a identidade de uma pessoa para acesso autorizado e monitoramento. A grande aceitação do uso da face tem várias vantagens sobre outras tecnologias biométricas: ela é natural, não exige equipamentos sofisticados, a aquisição de dados é baseada em abordagens não invasivas, e pode ser feito a distância, de maneira cooperativa ou não. Embora muitos estudos em reconhecimento facial tenham sido feitos, problemas com variação de iluminação, poses com oclusão facial, expressão facial e envelhecimento ainda são desafios, pois influenciam a performance dos sistemas de reconhecimento facial e motivam o desenvolvimento de novos sistemas de reconhecimento que lidam com esses problemas e sejam mais confiáveis. Este trabalho tem como objetivo avaliar a técnica de Padrões Localmente Mapeados em Multiescala (MSLMP) para o reconhecimento facial. Técnicas baseadas em algoritmos genéticos e processamento de imagens foram usadas para obter melhores resultados. Os resultados obtidos chegam a 100% de acurácia para alguns banco de dados. A base de dados MUCT ´e, em particular, bastante complexa, ela foi criada em 2010 com o objetivo de aumentar a quantidade de bancos de dados disponíveis com alta variação de iluminação, idade, posições e etnias, e por isso, ´e um banco de dados difícil quanto ao reconhecimento automático de faces. Uma nova técnica de processamento baseada na média dos níveis de cinza da base foi desenvolvida.