Sobre normalização e classificação de polaridade de textos opinativos na web

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Avanço, Lucas Vinicius
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24032016-171420/
Resumo: A área de Análise de Sentimentos ou Mineração de Opiniões tem como um dos objetivos principais analisar computacionalmente opiniões, sentimentos e subjetividade presentes em textos. Por conta da crescente quantidade de textos opinativos nas mídias sociais da web, e também pelo interesse de empresas e governos em insumos que auxiliem a tomada de decisões, esse tópico de pesquisa tem sido amplamente estudado. Classificar opiniões postadas na web, usualmente expressas em textos do tipo conteúdo gerado por usuários, ou UGC (user-generated content), é uma tarefa bastante desafiadora, já que envolve o tratamento de subjetividade. Além disso, a linguagem utilizada em textos do tipo UGC diverge, de várias maneiras, da norma culta da língua, o que impõe ainda mais dificuldade ao seu processamento. Este trabalho relata o desenvolvimento de métodos e sistemas que visam (a) a normalização de textos UGC, isto é, o tratamento do texto com correção ortográfica, substituição de internetês, e normalização de caixa e de pontuação, e (b) a classificação de opiniões, particularmente de avaliações de produtos, em nível de texto, para o português brasileiro. O método proposto para a normalização é predominantemente simbólico, uma vez que usa de forma explícita conhecimentos linguísticos. Já para a classificação de opiniões, que nesse trabalho consiste em atribuir ao texto um valor de polaridade, positivo ou negativo, foram utilizadas abordagens baseadas em léxico e em aprendizado de máquina, bem como a combinação de ambas na construção de um método híbrido original. Constatamos que a normalização melhorou o resultado da classificação de opiniões, pelo menos para métodos baseados em léxico. Também verificamos extrinsecamente a qualidade de léxicos de sentimentos para o português. Fizemos, ainda, experimentos avaliando a confiabilidade das notas dadas pelos autores das opiniões, já que as mesmas são utilizadas para a rotulação de exemplos, e verificamos que, de fato, elas impactam significativamente o desempenho dos classificadores de opiniões. Por fim, obtivemos classificadores de opiniões para o português brasileiro com valores de medida F1 que chegam a 0,84 (abordagem baseada em léxico) e a 0,95 (abordagem baseada em AM), e que são similares aos sistemas para outras línguas, que representam o estado da arte no domínio de avaliação de produtos.