Fatores de risco para náuseas pós-cesarianas: estudo observacional prospectivo

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Guimarães, Gabriel Magalhães Nunes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/5/5176/tde-24032022-114917/
Resumo: Introdução: os fatores de risco para náuseas e vômitos pós-operatórios após cesarianas não foram estabelecidos. Suspeitamos que o modelo simplificado de Apfel tenha baixo poder de discriminação nessa população pela ausência de variação de dois fatores de risco importantes. O objetivo foi buscar fatores de risco, modelar e validar um modelo multivariável para prever náuseas e vômitos após cesarianas. Métodos: duas coortes consecutivas de pacientes submetidas a cesarianas sob anestesia subaracnóidea foram usadas para desenvolver e validar candidatos a modelos preditores, respectivamente. Uma regressão logística múltipla, o modelo simplificado de Apfel e um classificador Naïve Bayes foram modelados e avaliados. Resultados: 250 e 98 pacientes permaneceram, respectivamente, nas amostras de desenvolvimento e validação. Pacientes mais jovens, que apresentaram náusea durante a cirurgia, pacientes que receberam doses mais baixas de bupivacaína e pacientes que negaram náuseas significantes no primeiro trimestre foram aquelas que apresentavam maior risco de náuseas e vômitos após cesarianas. O classificador Naïve Bayes e a regressão logística múltipla apresentaram poderes superiores de discriminação quando comparados ao do modelo simplificado de Apfel (estatística-c 0,84, 0,89 e 0,59 respectivamente, p < 0,0001), mas a diferença no poder de discriminação entre o classificador bayesiano e a regressão múltipla não foi estatisticamente significante (diferença de 0,05 na estatística-c, p=0,53). O classificador bayesiano apresentou critérios de informação (Akaike e Bayesiano) menores e uma curva ROC mais homogênea que a regressão múltipla. O classificador Naïve Bayes usou três preditores independentes: náuseas e vômitos intraoperatórios, história de náuseas moderadas ou intensas durante o primeiro trimestre e idade gestacional <38 semanas. Conclusões: náuseas intraoperatórias, idade materna, dose de bupivacaína e história de náuseas moderadas ou intensas durante o primeiro trimestre gestacional foram os melhores preditores independentes de náuseas e vômitos após cesarianas. Não conseguimos excluir a hipótese nula de que o poder de discriminação do classificador Naïve Bayes seja diferente da regressão logística múltipla para prever náuseas e vômitos após cesarianas, mas ambos foram superiores ao modelo simplificado de Apfel. O modelo simplificado de Apfel apresentou baixo poder de discriminação e não deve ser usado nessa população