Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Janes, Ricardo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-20072016-082931/
|
Resumo: |
Esta tese tem por finalidade apresentar o desenvolvimento de um sistema biométrico de baixo custo, capaz de identificar pessoas pela análise dos padrões de veias das mãos com obtenção de imagens no espectro infravermelho próximo. O sistema foi montado fisicamente através da construção de um protótipo e então foram aquisitadas e armazenadas 520 imagens da parte dorsal da mão direita de 52 diferentes usuários, após isto foi realizada a extração de uma região de interesse definida pela maior porção quadrada da parte dorsal da mão. Em seguida foram aplicados três diferentes métodos de equalização e suavização da imagem na fase de pré-processamento, para posterior extração das características das veias com a utilização da transformada de Curvelet na função \"wrapping\" e aplicação do algoritmo Padrão Binário Local (LBP) para a digitalização do conteúdo extraído. No próximo passo, uma análise de identificação foi realizada usando cinco diferentes métodos de classificação. Em primeiro lugar, foi utilizado um classificador probabilístico Naive Bayes, em seguida um classificador baseado em aprendizagem por regressão linear Kernel Nearest Neighbor (K-NN), ainda foram aplicados dois algoritmos baseados em árvores de decisão C4.5 e Random Forest e finalmente um algoritmo baseado em redes neurais artificiais Multilayer Perceptron. Os classificadores foram testados utilizando o método de validação cruzada, e as informações foram separadas por 10 folds sendo que 10% dos dados foram utilizados para treino e 90% dos dados foram utilizados para teste. Com os mesmos dados resultantes da fase de pré-processamento, dois algoritmos foram aplicados para seleção de características, sendo o primeiro baseado na correlação da função de seleção de recursos e o segundo na seleção de atributos pelo conceito da entropia dos dados. Os resultados provam que o método de equalização de histograma adaptativa por limite de contraste na fase de pré-processamento apresentou os melhores resultados. Quanto aos classificadores, os melhores resultados foram obtidos com o uso da rede neural artificial proposta e as taxas de falsa aceitação (FAR) e falsa rejeição (FRR) obtidas após o processamento foram estimadas em 0,038 e 0,003 respectivamente. Foram realizados ainda testes com a quantidade mínima de imagens necessárias para identificação de pessoas e chegou-se ao valor de cinco imagens por usuário. Finalmente a avaliação da permanência do sistema biométrico foi realizada através da análise de imagens capturadas após um ano da primeira análise e os resultados mostram que o sistema é robusto, apesar das imagens conterem pequenas alterações, proporcionais às variações do índice de massa corporal dos usuários. |