Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Lima Junior, José |
Orientador(a): |
Engel, Paulo Martins |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/12012
|
Resumo: |
Com o crescimento das empresas que fazem uso das tecnologias de bancos de dados, os administradores destes bancos de dados criam novos esquemas a cada instante, e na maioria dos casos não existe uma normalização ou procedimentos formais para que tal tarefa seja desempenhada de forma homogênea, resultando assim em bases de dados incompatíveis, o que dificulta a troca de dados entre as mesmas. Quando os Sistemas de Bancos de Dados (SBD) são projetados e implementados independentemente, é normal que existam incompatibilidades entre os dados de diferentes SBD. Como principais conflitos existentes nos esquemas de SBD, podem ser citados problemas relacionados aos nomes dos atributos, armazenamento em diferentes unidades de medida, diferentes níveis de detalhes, atributos diferentes com mesmo nome ou atributos iguais com nomes diferentes, tipos de dado diferentes, tamanho, precisão, etc. Estes problemas comprometem a qualidade da informação e geram maiores custos em relação à manutenção dos dados. Estes problemas são conseqüências de atributos especificados de forma redundante. Estes fatos têm provocado grande interesse em descobrir conhecimento em banco de dados para identificar informações semanticamente equivalentes armazenadas nos esquemas. O processo capaz de descobrir este conhecimento em banco de dados denomina-se DCDB (Descoberta de Conhecimento em Bancos de Dados). As ferramentas disponíveis para a execução das tarefas de DCDB são genéricas e derivadas de outras áreas do conhecimento, em especial, da estatística e inteligência artificial. As redes neurais artificiais (RNA) têm sido utilizadas em sistemas cujo propósito é a identificação de padrões, antes desconhecidos. Estas redes podem aprender similaridades entre os dados, diretamente de suas instâncias, sem conhecimento a priori. Uma RNA que tem sido usada com êxito para identificar equivalência semântica é o Mapa Auto-Organizável (SOM). Esta pesquisa objetiva descobrir, de modo semi-automatizado, equivalência semântica entre atributos de bases de dados, contribuindo para o gerenciamento e integração das mesmas. O resultado da pesquisa gerou uma sistemática para o processo de descoberta e uma ferramenta que a implementa. |