Modelos de regressão estáticos e dinâmicos para taxas ou proporções: uma abordagem bayesiana

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Correia, Leandro Tavares
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-27082015-224138/
Resumo: Este trabalho apresenta um estudo de dados com resposta em intervalos limitados, mais especificamente no intervalo [0,1], como no caso de taxas e proporções. Em diversos casos práticos esta estrutura de dados apresenta uma quantidade não negligenciável de valores extremos (0 e 1) e que modelos usuais não são adequados para sua análise. Para esta situação propomos, por meio de um enfoque Bayesiano, modelos de regressão beta inflacionado de zeros e uns (BIZU) e modelos de regressão Tobit duplamente censurado adaptados nesse intervalo. Técnicas de diagnóstico e qualidade do ajuste também são discutidas. Apresentamos a análise desta estrutura de dados no contexto de série de tempo por meio da abordagem Bayesiana de modelos dinâmicos. Estudos de comportamento e previsão de séries de tempo foram explorados utilizando técnicas de Monte Carlo sequencial, conhecidas como filtro de partículas. Particularidades e competitividade entre as duas classes de modelos também foram discutidas.