Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Pereira, Gustavo Henrique de Araujo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-14082012-123751/
|
Resumo: |
Os modelos de regressão beta e beta inflacionados conseguem ajustar adequadamente grande parte das variáveis do tipo proporção. No entanto, esses modelos não são úteis quando a variável resposta não pode assumir valores no intervalo (0,c) e assume o valor c com probabilidade positiva. Variáveis relacionadas a algum tipo de pagamento limitado entre dois valores, quando estudadas em relação ao seu valor máximo, possuem essas características. Para ajustar essas variáveis, introduzimos a distribuição beta inflacionada truncada (BIZUT), que é uma mistura de uma distribuição beta com suporte no intervalo (c,1) e uma distribuição trinomial que assume os valores zero, um e c. Propomos ainda um modelo de regressão para as situações em que a variável resposta tem distribuição BIZUT. Admitimos que todos os parâmetros da distribuição podem variar em função de variáveis preditoras. Além disso, o modelo permite que o parâmetro conhecido c varie entre as unidades populacionais. Para esse modelo são desenvolvidos diversos aspectos inferenciais, são obtidos resultados para as situações em que c é variável e são conduzidos estudos de simulação de Monte Carlo. Além disso, discutimos análise de resíduos, desenvolvemos análise de influência local e realizamos uma aplicação a dados reais de cartão de crédito. |