Empacotamento e contagem em digrafos: cenários aleatórios e extremais

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Parente, Roberto Freitas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-24052017-183349/
Resumo: Nesta tese estudamos dois problemas em digrafos: um problema de empacotamento e um problema de contagem. Estudamos o problema de empacotamento máximo de arborescências no digrafo aleatório D(n,p), onde cada possvel arco é inserido aleatoriamente ao acaso com probabilidade p = p(n). Denote por (D(n,p)) o maior inteiro possvel 0 tal que, para todo 0 l , temos ^(l-1)_i=0 (l-i)|{v in d^in(v) = i}| Provamos que a quantidade máxima de arborescências em D(n,p) é (D(n,p)) assintoticamente quase certamente. Nós também mostramos estimativas justas para (D(n, p)) para todo p [0, 1]. As principais ferramentas que utilizamos são relacionadas a propriedades de expansão do D(n, p), o comportamento do grau de entrada do digrafo aleatório e um resultado clássico de Frank que serve como ligação entre subpartições em digrafos e a quantidade de arborescências. Para o problema de contagem, estudamos a densidade de subtorneios fortemente conexos com 5 vértices em torneios grandes. Determinamos a densidade assintótica máxima para 5 torneios bem como as famlias assintóticas extremais de cada torneios. Como subproduto deste trabalho caracterizamos torneios que são blow-ups recursivos de um circuito orientado com 3 vértices como torneios que probem torneios especficos de tamanho 5. Como principal ferramenta para esse problema utilizados a teoria de álgebra de flags e configurações combinatórias obtidas através do método semidefinido.