Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Monteiro, Rubens Cainan Sabóia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/63318
|
Resumo: |
We study the number of Gallai 3-colorings in the Erdös-Rényi random graph, G(n, p). A Gallai 3-coloring of a graph is a coloring of its edges with colors {1,2,3} such that there is no rainbow triangle, that is, a triangle with edges of 3 distinct colors. It is trivial that for any graph with E edges, the number of Gallai 3-colorings is between 2E and 3E. Now, let E be the random variable for the number of edges in G(n, p). We show that for every δ > 0 there are constants cand C such that, asymptotically almost surely, for p < cn−1/2, the number of Gallai 3-coloring of G(n, p) is at least 3(1−δ)E; and for p > Cn−1/2 this number is at most 2(1+δ)E. |