Detalhes bibliográficos
Ano de defesa: |
2002 |
Autor(a) principal: |
Teixeira, Valkiria Elizabeth |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-205759/
|
Resumo: |
Estuda-se as soluções de um sistema dinâmico conservativo e autônomo, que satisfazem a condições de fronteira a dois valores, sob um ponto de vista enumerativo. Interpretando-se uma variedade Riemanniana completa (M, g) como o espaço das configurações de um sistema mecânico, estas soluções representam as trajetórias e massas que se movem sob a ação de uma fora conservativa com potencial - V. Quer se estabelecer condições suficientes, métricas e topológicas sobre (M, g), e para o potencial V, que garantam a existência e a finitude do número de tais soluções, ligando dois pontos p, q pertencentes a M que sejam não-conjugados em M em um sentido conveniente. Assim, a noção de conjugação induzida por um sistema dinâmico geral é estudada em detalhe. O principal resultado sobre finitude assume uma condição que pode ser considerada tanto métrica como topológica em (M, g): assume-se que (M, g) admite uma função estritamente convexa. Para tanto, estuda-se a noção de convexidade em (M, g) isto é, as propriedades, exemplos e construções de funções convexas definidas, inicialmente na reta e, em variedades Riemannianas |