Interpolação de dados faltantes em séries de imagens de satélite

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Alves, Vinicius Soares Martins
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-21012022-234852/
Resumo: O objetivo deste trabalho é comparar modelos de predição para a interpolação de dados faltantes em conjuntos de dados espaço-temporais dispostos em grade, comumente oferecidos através de sistemas de sensoriamento remoto. O método de Krigagem Universal, usual para essa aplicação, é computacionalmente intenso e seu uso pode ser inviável num contexto em que o volume de dados é maior. Uma classe de modelos mistos chamada Krigagem de Posto Fixo (FRK) visa reduzir a complexidade computacional desse procedimento e é comparada com modelos espaço-temporais hierárquicos que se beneficiam da relação entre a função de covariância de Matérn e a solução de equações diferencias parciais estocásticas. Simulações apontam melhores resultados para os métodos de maior complexidade computacional, mas a redução no tempo de execução é substancial para os novos modelos, com desempenho satisfatório sobretudo para os modelos hierárquicos. Por fim, para ilustração, os novos modelos são aplicados para um conjunto de dados obtidos de um satélite equipado com sensores de temperatura de superfície para uma área da Região Metropolitana de São Paulo.