Grupos de Lie, ações próprias e a conjectura de Palais-Terng

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Spíndola, Flausino Lucas Neves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-21012016-153618/
Resumo: Apresentamos conceitos da teoria de Grupos de Lie e Ações Próprias e descrevemos a demonstração da Conjectura de Palais-Terng efetuada por Alexandrino. Tal conjectura garante que uma folheação riemanniana singular com distribuição normal é uma folheação riemanniana singular com seções. Adaptamos para o caso particular das ações isométricas.