Desenvolvimento de um modelo adaptativo baseado em um sistema SVR-Wavelet híbrido para previsão de séries temporais financeiras.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Raimundo, Milton Saulo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
SVR
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-13072018-143525/
Resumo: A necessidade de antecipar e identificar variações de acontecimentos apontam para uma nova direção nos mercados de bolsa de valores e vem de encontro às análises das oscilações de preços de ativos financeiros. Esta necessidade leva a argumentar sobre novas alternativas na predição de séries temporais financeiras utilizando métodos de aprendizado de máquinas e vários modelos têm sido desenvolvidos para efetuar a análise e a previsão de dados de ativos financeiros. Este trabalho tem por objetivo propor o desenvolvimento de um modelo de previsão adaptativo baseado em um sistema SVR-wavelet híbrido, que integra modelos de wavelets e Support Vector Regression (SVR) na previsão de séries financeiras. O método consiste na utilização da Transformada de Wavelet Discreta (DWT) a fim de decompor dados de séries de ativos financeiros que são utilizados como variáveis de entrada do SVR com o objetivo de prever dados futuros de ativos financeiros. O modelo proposto é aplicado a um conjunto de ativos financeiros do tipo Foreign Exchange Market (FOREX), Mercado Global de Câmbio, obtidos a partir de uma base de conhecimento público. As séries são ajustadas gerando-se novas predições das séries originais, que são comparadas com outros modelos tradicionais tais como o modelo Autorregressivo Integrado de Médias Móveis (ARIMA), o modelo Autorregressivo Fracionário Integrado de Médias Móveis (ARFIMA), o modelo Autorregressivo Condicional com Heterocedasticidade Generalizado (GARCH) e o modelo SVR tradicional com Kernel. Além disso, realizam-se testes de normalidade e de raiz unitária para distribuição não linear, tal como testes de correlação, para constatar que as séries temporais FOREX são adequadas para a comprovação do modelo híbrido SVR-wavelet e posterior comparação com modelos tradicionais. Verifica-se também a aderência ao Expoente de Hurst por meio da estatística de Reescalonamento (R/S).