Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Bruscato, Lucas Peinado |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12032020-055952/
|
Resumo: |
A corrupção no Brasil afeta diretamente o bem-estar dos cidadãos ao diminuir os investimentos públicos na saúde, na educação, em infraestrutura, segurança, habitação, entre outros direitos essenciais à vida. A democratização da internet e a evolução da ciência de dados nos permitiu avaliar a relação de irregularidades administrativas, no caso deste trabalho palavras negativas, e mudanças em indicadores sociais sobre municípios. Desenvolvemos um algoritmo (web scraper) que automatiza a captura dos relatórios da auditoria da CGU e analisamos a polaridade das palavras presentes nos relatórios separadamente. Obtivemos os dados socioeconômicos no censo do IBGE em dois períodos e criamos modelos de aprendizado de máquina para predição do percentual de polaridade negativa por município baseado nos dados do IBGE. Para se avaliar a qualidade de um modelo complexo é importante ter um modelo simples como parâmetro de desempenho base, realizamos o treinamento de três modelos (regressão linear, random forest e xgboost) sobre a base de dados criada. As principais contribuições deste trabalho foram a extração automatizada dos dados governamentais, encontrar evidência estatística da relação entre os dados dos relatórios e dos dados socioeconômicos de fontes distintas e modelos de aprendizado de máquina funcionais para o problema proposto. |