Predição de polaridade negativa em relatórios de auditoria utilizando dados socioeconômicos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Bruscato, Lucas Peinado
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12032020-055952/
Resumo: A corrupção no Brasil afeta diretamente o bem-estar dos cidadãos ao diminuir os investimentos públicos na saúde, na educação, em infraestrutura, segurança, habitação, entre outros direitos essenciais à vida. A democratização da internet e a evolução da ciência de dados nos permitiu avaliar a relação de irregularidades administrativas, no caso deste trabalho palavras negativas, e mudanças em indicadores sociais sobre municípios. Desenvolvemos um algoritmo (web scraper) que automatiza a captura dos relatórios da auditoria da CGU e analisamos a polaridade das palavras presentes nos relatórios separadamente. Obtivemos os dados socioeconômicos no censo do IBGE em dois períodos e criamos modelos de aprendizado de máquina para predição do percentual de polaridade negativa por município baseado nos dados do IBGE. Para se avaliar a qualidade de um modelo complexo é importante ter um modelo simples como parâmetro de desempenho base, realizamos o treinamento de três modelos (regressão linear, random forest e xgboost) sobre a base de dados criada. As principais contribuições deste trabalho foram a extração automatizada dos dados governamentais, encontrar evidência estatística da relação entre os dados dos relatórios e dos dados socioeconômicos de fontes distintas e modelos de aprendizado de máquina funcionais para o problema proposto.