Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Migliato, Luiz Felipe Casali |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-29032023-141721/
|
Resumo: |
A predição de resultados futuros através do uso da inteligência artificial é uma aplicação relevante em diversas áreas, como a industrial, financeira, agronegócio, entre outras. A aplicação de inteligência artificial interpretável pode trazer um conhecimento adicional dos dados para os especialistas, além de poder ser traduzida em vantagem competitiva pelas empresas que a utiliza. Dessa forma, para os Leilões de Transmissão da ANEEL buscou-se investigar a capacidade preditiva de quatro algoritmos de Aprendizado de Máquina interpretáveis, mais especificamente Árvore de Decisão, Random Forest, XGBoost e CatBoost, em contextos gerados a partir de diferentes métodos de seleção de variáveis. A comparação e a avaliação do desempenho dos modelos gerados por esses algoritmos foram feitas a partir das métricas RMSE e R 2 , bem como o teste de hipótese de Friedman e o teste post-hoc de Nemenyi. Os resultados demonstraram que o contexto mais adequado foi o CatBoost com todas as variáveis. Assim, foi estudada a interpretabilidade do modelo através das árvores geradas e os atributos mais destacados, além de ser aplicado para predizer deságios em lotes de Leilões da ANEEL utilizando dados reais não visto. |