Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Aguiar, Nelson Augusto Oliveira de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/98/98131/tde-10102016-065309/
|
Resumo: |
Com o avanço tecnológico surgem novas ferramentas que auxiliam os médicos no diagnóstico de diversas doenças. Na área cardiovascular, após permanecer por um longo período em segundo plano, a ausculta cardíaca voltou a ser muito utilizada devido ao surgimento, no mercado, de estetoscópios digitais. Tais aparelhos contam com novos recursos tecnológicos que permitem a captação e a análise de dados de forma automática, oferecendo mais informações ao profissional da área. Levando em conta essa nova ascensão da área de Fonocardiografia,o presente trabalho se dedicou à separação das bulhas S1 e S2 por meio de ferramentas computacionais, com o propósito de auxiliar médicos não especialistas em Cardiologia a verificar a existência de possíveis anormalidades no som cardíaco. Acreditando na possibilidade de este procedimento vir a ser utilizado posteriormente para auxiliar no reconhecimento de padrões dos sons cardíacos, este trabalho se propôs a criar um algoritmo para detecção automática de anormalidades que afetam as bulhas S1 e S2. Assim, aplicou-se a técnica de Wavelet sobre uma base de dados de sons cardíacos constituída de 1209 bulhas, auditada pelo Real Hospital Português e também pelo Instituto Dante Pazzanese de Cardiologia. Os melhores resultados obtidos na separação das bulhas foram, nos sons normais, de 96,96% de acurácia para a S1 e de 97,92% para a S2. Já nos sons cardíacos com sopro, obteve-se a acurácia de 87,46% para a separação da S1 e de 89,26% para a S2. Juntos, os resultados dos sons normais e dos sons com sopro totalizaram uma acurácia de 94,02% para a separação da S1 e de 94,54% para a S2. |