Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Breve, Fabricio Aparecido |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21092010-104722/
|
Resumo: |
Redes complexas é um campo de pesquisa científica recente e bastante ativo que estuda redes de larga escala com estruturas topológicas não triviais, tais como redes de computadores, redes de telecomunicações, redes de transporte, redes sociais e redes biológicas. Muitas destas redes são naturalmente divididas em comunidades ou módulos e, portanto, descobrir a estrutura dessas comunidades é um dos principais problemas abordados no estudo de redes complexas. Tal problema está relacionado com o campo de aprendizado de máquina, que tem como interesse projetar e desenvolver algoritmos e técnicas que permitem aos computadores aprender, ou melhorar seu desempenho através da experiência. Alguns dos problemas identificados nas técnicas tradicionais de aprendizado incluem: dificuldades em identificar formas irregulares no espaço de atributos; descobrir estruturas sobrepostas de grupos ou classes, que ocorre quando elementos pertencem a mais de um grupo ou classe; e a alta complexidade computacional de alguns modelos, que impedem sua aplicação em bases de dados maiores. Neste trabalho tratamos tais problemas através do desenvolvimento de novos modelos de aprendizado de máquina utilizando redes complexas e dinâmica espaço-temporal, com capacidade para tratar grupos e classes sobrepostas, além de fornecer graus de pertinência para cada elemento da rede com relação a cada cluster ou classe. Os modelos desenvolvidos tem desempenho similar ao de algoritmos do estado da arte, ao mesmo tempo em que apresentam ordem de complexidade computacional menor do que a maioria deles |