Relações entre ranking, análise ROC e calibração em aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Matsubara, Edson Takashi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04032009-114050/
Resumo: Aprendizado supervisionado tem sido principalmente utilizado para classificação. Neste trabalho são mostrados os benefícios do uso de rankings ao invés de classificação de exemplos isolados. Um rankeador é um algoritmo que ordena um conjunto de exemplos de tal modo que eles são apresentados do exemplo de maior para o exemplo de menor expectativa de ser positivo. Um ranking é o resultado dessa ordenação. Normalmente, um ranking é obtido pela ordenação do valor de confiança de classificação dado por um classificador. Este trabalho tem como objetivo procurar por novas abordagens para promover o uso de rankings. Desse modo, inicialmente são apresentados as diferenças e semelhanças entre ranking e classificação, bem como um novo algoritmo de ranking que os obtém diretamente sem a necessidade de obter os valores de confiança de classificação, esse algoritmo é denominado de LEXRANK. Uma área de pesquisa bastante importante em rankings é a análise ROC. O estudo de árvores de decisão e análise ROC é bastante sugestivo para o desenvolvimento de uma visualização da construção da árvore em gráficos ROC. Para mostrar passo a passo essa visualização foi desenvolvido uma sistema denominado PROGROC. Ainda do estudo de análise ROC, foi observado que a inclinação (coeficiente angular) dos segmentos que compõem o fecho convexo de curvas ROC é equivalente a razão de verossimilhança que pode ser convertida para probabilidades. Essa conversão é denominada de calibração por fecho convexo de curvas ROC que coincidentemente é equivalente ao algoritmo PAV que implementa regressão isotônica. Esse método de calibração otimiza Brier Score. Ao explorar essa medida foi encontrada uma relação bastante interessante entre Brier Score e curvas ROC. Finalmente, também foram explorados os rankings construídos durante o método de seleção de exemplos do algoritmo de aprendizado semi-supervisionado multi-descrição CO-TRAINING