Aplicações estatísticas na área industrial

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Silva, Gecirlei Francisco da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30112011-142703/
Resumo: Apresentamos algumas aplicações de ferramentas estatísticas que são comumente utilizadas na melhoria da qualidade de processos industriais. Inicialmente, desenvolveu-se procedimentos para testar a competência de laboratórios que participam de programas de ensaios de proficiência. Em situações onde os laboratórios medem várias vezes no mesmo ponto, utilizou-se o modelo de erros de medição, proposto por Jaech [39](1985). Além disso, a inferência sobre os parâmetros de tendência aditiva foi generalizada para a classe de distribuições elípticas. A competência dos laboratórios é avaliada pelo teste da razão de verossimilhança generalizada, do qual, obtemos a distribuição exata para a estatística proposta. Em situações onde os laboratórios medem várias vezes em vários pontos e a variável em análise apresenta variações naturais, utilizou-se o modelo com erro nas variáveis. Diante disso, vamos estender o modelo estrutural definido em Barnett [13] (1969) para o modelo ultra-estrutural com réplicas. Neste caso, vamos avaliar não somente a tendência aditiva, mas também, a tendência multiplicativa, ou seja, avaliar a linearidade das medições. As estimativas dos parâmetros foram obtidas via procedimento do algorítmo EM, com isso, desenvolvemos os teste de Wald, razão de verossimilhança e escore para avaliar a competência dos laboratórios. Nos dois modelos propostos, generalizamos o erro normalizado (En) sugerido pelo Guia 43 [37] para testar a competência dos laboratórios participantes de programas de ensaio de proficiência. Apresentamos também, um procedimento para calcular índices de performance para processos univariados e multivariados. Nestes casos, consideramos que a distribuição dos dados segue uma distribuição Normal assimétrica. Além disso, apresentamos uma análise de simulação onde concluímos que a presença de assimetria nos dados pode causar interpretações erradas sobre o processo, quando a distribuição assumida para os dados é a Normal