Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Dias, Raphael Antonio Prado |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-06052014-165527/
|
Resumo: |
A simulação de dados que seguem distribuição de Poisson é essencial em muitas aplicações reais de várias áreas, tais como saúde, marketing, ciências agronômicas, entre outras em que os dados são contagens multivariadas. Métodos de simulação atuais sofrem de limitações computacionais e restrições à estrutura de correlação e, portanto, são raramente usados. Neste trabalho propôs-se uma modificação do método NORTA para gerar dados com distribuição Poisson multivariada a partir de uma distribuição normal multivariada com matriz de correlações e vetor de médias pré estabelecidos. Como as distribuições Normal multivariada e univariada e a distribuição Poisson univariada já estão implementadas em softwares estatísticos, inclusive no R, implementou-se algumas linhas de código. Mostrou-se que o método funciona bem e é altamente preciso na geração de dados multivariados com distribuição marginais de Poisson, para diferentes estruturas de correlações (negativas e positivas e variando os valores) e para altos e baixos valores de médias. Mostrou-se as vantagens práticas da simulação de dados de Poisson multivariada sobre a normal multivariada na detecção da taxa de falsos alertas de super populações de percevejos, evidenciando que simulações inadequadas podem levar a excesso de falsos alertas. Uma vez que os dados seguem distribuição Poisson multivariada, a taxa de falsos alertas pode ser maior do que a imaginada. Essa taxa pode ser estimada por um modelo ajustado. A mesma técnica pode ser aplicada em diversos problemas de várias áreas do conhecimento. |