Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Luz, Fabiano Ferreira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-01042019-101602/
|
Resumo: |
Semantic parsing is the process of mapping a natural-language sentence into a machine-readable, formal representation of its meaning. The LSTM Encoder-Decoder is a neural architecture with the ability to map a source language into a target one. We are interested in the problem of mapping natural language into SPARQL queries, and we seek to contribute with strategies that do not rely on handcrafted rules, high-quality lexicons, manually-built templates or other handmade complex structures. In this context, we present two contributions to the problem of semantic parsing departing from the LSTM encoder-decoder. While natural language has well defined vector representation methods that use a very large volume of texts, formal languages, like SPARQL queries, suffer from lack of suitable methods for vector representation. In the first contribution we improve the representation of SPARQL vectors. We start by obtaining an alignment matrix between the two vocabularies, natural language and SPARQL terms, which allows us to refine a vectorial representation of SPARQL items. With this refinement we obtained better results in the posterior training for the semantic parsing model. In the second contribution we propose a neural architecture, that we call Encoder CFG-Decoder, whose output conforms to a given context-free grammar. Unlike the traditional LSTM encoder-decoder, our model provides a grammatical guarantee for the mapping process, which is particularly important for practical cases where grammatical errors can cause critical failures. Results confirm that any output generated by our model obeys the given CFG, and we observe a translation accuracy improvement when compared with other results from the literature. |