[pt] NOVAS MEDIDAS DE IMPORTÂNCIA DE VÉRTICES PARA APERFEIÇOAR A BUSCA POR PALAVRAS-CHAVE EM GRAFOS RDF

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: ELISA SOUZA MENENDEZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37741&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37741&idi=2
http://doi.org/10.17771/PUCRio.acad.37741
Resumo: [pt] Um ponto importante para o sucesso de sistemas de busca por palavras-chave é um mecanismo de ranqueamento que considera a importância dos documentos recuperados. A noção de importância em grafos é tipicamente computada usando medidas de centralidade, que dependem amplamente do grau dos nós, como o PageRank. Porém, em grafos RDF, a noção de importância não é necessariamente relacionada com o grau do nó. Sendo assim, esta tese aborda dois problemas: (1) como definir uma medida de importância em grafos RDF; (2) como usar essas medidas para ajudar a compilar e ranquear respostas a consultas por palavras-chave sobre grafos RDF. Para resolver estes problemas, esta tese propõe uma nova família de medidas, chamada de InfoRank, e um sistema de busca por palavras-chave, chamado QUIRA, para grafos RDF. Esta tese é concluída com experimentos que mostram que a solução proposta melhora a qualidade dos resultados em benchmarks de busca por palavras-chave.