Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Oesselmann, Clarissa Cardoso |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-06072017-122423/
|
Resumo: |
Uma suposição muito comum na análise de modelos de regressão é a de respostas independentes. No entanto, quando trabalhamos com dados longitudinais ou agrupados essa suposição pode não fazer sentido. Para resolver esse problema existem diversas metodologias, e talvez a mais conhecida, no contexto não Gaussiano, é a metodologia de Equações de Estimação Generalizadas (EEGs), que possui similaridades com os Modelos Lineares Generalizados (MLGs). Essas similaridades envolvem a classificação do modelo em torno de distribuições da família exponencial e da especificação de uma função de variância. A única diferença é que nessa função também é inserida uma matriz trabalho que inclui a parametrização da estrutura de correlação dentro das unidades experimentais. O principal objetivo desta dissertação é estudar como esses modelos se comportam em uma situação específica, de dados de contagem com sobredispersão. Quando trabalhamos com MLGs esse problema é resolvido através do ajuste de um modelo com resposta binomial negativa (BN), e a ideia é a mesma para os modelos envolvendo EEGs. Essa dissertação visa rever as teorias existentes em EEGs no geral e para o caso específico quando a resposta marginal é BN, e além disso mostrar como essa metodologia se aplica na prática, com três exemplos diferentes de dados correlacionados com respostas de contagem. |