Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Neves, Elvis Donizeti |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55136/tde-18042013-141806/
|
Resumo: |
O ensino de Matemática é, de modo geral, orientado pelos processos contidos nos livros didáticos. Sendo assim, a organização dos conceitos matemáticos nesses livros deveria ser capaz de permitir ao leitor interpretar a Matemática em sua essência, admitindo o estabelecimento de relações entre os conteúdos. No entanto, o que geralmente se observa nos materiais é um aglomerado de definições e conceitos desconexos que conduzem o leitor a dificuldades de aprendizado na área. Por essa razão, a presente dissertação teve o objetivo principal de localizar, além de caracterizar, os pontos notáveis do triângulo: o centróide ou baricentro (G), o ortocentro (H), o circuncentro (O), o centro (N) da circunferência de nove pontos, os três ex-centros das circunferências ex-inscritas, as projeções ortogonais dos vértices sobre os lados opostos e os pontos de tangência da circunferência inscrita e ex-inscrita. Quatro abordagens são apresentadas em busca de tal objetivo: a-) apresentar a geometria do triângulo segundo técnicas de percepção visual; b-) caracterizar alguns pontos notáveis do triângulo, como pontos de máximo ou de mínimo de funções com as demonstrações utilizando desigualdade de Cauchy-Schwarz e entre média aritmética e geométrica; c-) utilizar um sistema cartesiano adequado para o cálculo das abscissas e ordenadas do centróide (G), do ortocentro (H) e do circuncentro (O) de um triângulo; d-) utilizar os números complexos para a completa localização de todos os pontos notáveis do triângulo além de apresentar a equação da reta de Euler, o incentro (I) e os três excentros IA, IB e IC localizados em fórmulas simples. A dissertação finaliza com o Teorema de Feuerbach, apresentado com uma prova elementar, mostrando que a circunferência de nove pontos e a circunferência inscrita são tangentes internamente e que a circunferência dos nove pontos é tangente exteriormente a cada uma das três ex circunferências e o Teorema de Napoleão, no qual os baricentros de triângulos equiláteros, construídos a partir dos lados de um triângulo qualquer, formam um outro triângulo equilátero. Comparando as várias abordagens da dissertação, a conclusão é a de que a compreensão dos números complexos paradoxalmente simplifica a resolução de problemas de geometria plana e a solução de equações polinomiais. Assim, acredita-se que uma maior exploração desse conteúdo no ensino da Matemática poderia tornar o aprendizado mais atraente e simplificado |