Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Ceron, João Marcelo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-28022018-105426/
|
Resumo: |
Detectar e analisar malwares é um processo essencial para aprimorar os sistemas de segurança. As soluções atuais apresentam limitações no processo de investigação e detecção de códigos maliciosos sofisticados. Mais do que utilizar técnicas para evadir sistemas de análise, malwares sofisticados requerem condições específicas no ambiente em que são executados para revelar seu comportamento malicioso. Com o surgimento das Redes Definidas por Software (SDN), notou-se uma oportunidade para aprimorar o processo de investigação de malware propondo uma arquitetura flexível apta a detectar variações comportamentais de maneira automática. Esta tese apresenta uma arquitetura especializada para analisar códigos maliciosos que permite controlar de maneira unificada o ambiente de análise, incluindo o sandbox e os elementos que o circundam. Dessa maneira, é possível gerenciar regras de contenção, configuração dinâmica de recursos, e manipular o tráfego de rede gerado pelos malwares. Para avaliar a arquitetura foi analisado um conjunto de malwares em dois cenários de avaliação. No primeiro cenário de avaliação, as funcionalidades descritas pela solução proposta revelaram novos eventos comportamentais em 100% dos malwares analisados. Já, no segundo cenários de avaliação, foi analisado um conjunto de malwares projetados para dispositivos IoT. Em consequência, foi possível bloquear ataques, monitorar a comunicação do malware com seu controlador de botnet, e manipular comandos de ataques. |