Modelo bayesiano para dados de sobrevivência com riscos semicompetitivos baseado em cópulas

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Patiño, Elizabeth González
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-17072018-155825/
Resumo: Motivados por um conjunto de dados de pacientes com insuficiência renal crônica (IRC), propomos uma nova modelagem bayesiana que envolve cópulas da família Arquimediana e um modelo misto para dados de sobrevivência com riscos semicompetitivos. A estrutura de riscos semicompetitivos é bastante comum em estudos clínicos em que dois eventos são de interesse, um intermediário e outro terminal, de forma tal que a ocorrência do evento terminal impede a ocorrência do intermediário mas não vice-versa. Nesta modelagem provamos que a distribuição a posteriori sob a cópula de Clayton é própria. Implementamos os algoritmos de dados aumentados e amostrador de Gibbs para a inferência bayesiana, assim como os criterios de comparação de modelos: LPML, DIC e BIC. Realizamos um estudo de simulação para avaliar o desempenho da modelagem e finalmente aplicamos a metodologia proposta para analisar os dados dos pacientes com IRC, além de outros de pacientes que receberam transplante de medula óssea.