Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Patiño, Elizabeth González |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-17072018-155825/
|
Resumo: |
Motivados por um conjunto de dados de pacientes com insuficiência renal crônica (IRC), propomos uma nova modelagem bayesiana que envolve cópulas da família Arquimediana e um modelo misto para dados de sobrevivência com riscos semicompetitivos. A estrutura de riscos semicompetitivos é bastante comum em estudos clínicos em que dois eventos são de interesse, um intermediário e outro terminal, de forma tal que a ocorrência do evento terminal impede a ocorrência do intermediário mas não vice-versa. Nesta modelagem provamos que a distribuição a posteriori sob a cópula de Clayton é própria. Implementamos os algoritmos de dados aumentados e amostrador de Gibbs para a inferência bayesiana, assim como os criterios de comparação de modelos: LPML, DIC e BIC. Realizamos um estudo de simulação para avaliar o desempenho da modelagem e finalmente aplicamos a metodologia proposta para analisar os dados dos pacientes com IRC, além de outros de pacientes que receberam transplante de medula óssea. |