Modelagens estatística para dados de sobrevivência bivariados: uma abordagem bayesiana

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Ribeiro, Taís Roberta
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-12052017-095610/
Resumo: Os modelos de fragilidade são utilizados para modelar as possíveis associações entre os tempos de sobrevivência. Uma outra alternativa desenvolvida para modelar a dependência entre dados multivariados é o uso dos modelos baseados em funções cópulas. Neste trabalho propusemos dois modelos de sobrevivência derivados das cópulas de Ali- Mikhail-Haq (AMH) e de Frank para modelar a dependência de dados bivariados na presença de covariáveis e observações censuradas. Para fins inferenciais, realizamos uma abordagem bayesiana usando métodos Monte Carlo em Cadeias de Markov (MCMC). Algumas discussões sobre os critérios de seleção de modelos são apresentadas. Com o objetivo de detectar observações influentes utilizamos o método bayesiano de análise de influência de deleção de casos baseado na divergência ψ. Por fim, mostramos a aplicabilidade dos modelos propostos a conjuntos de dados simulados e reais. Apresentamos, também, um novo modelo de sobrevivência bivariado com fração de cura, que leva em consideração três configurações para o mecanismo de ativação latente: ativação aleatória, primeira ativação é última ativação. Aplicamos este modelo a um conjunto de dados de empréstimo de Crédito Direto ao modo do Consumidor (DCC) e comparamos os ajustes por meio dos critérios bayesianos de seleção de modelos para verificar qual dos três modelos melhor se ajustou. Por fim, mostramos nossa proposta futura para a continuação da pesquisa.