Uma abordagem topológica e dinâmica à geometria fractal

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Silva, Gabriela Cristina da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
IFS
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052023-204221/
Resumo: Majoritariamente, fractais são definidos como atratores de um Sistema de Funções Iteradas (IFS). Definir fractais dessa forma muitas vezes facilita o cálculo de sua dimensão de Hausdorff, uma vez que fazer o cálculo pela definição é, em geral, complicado. O objetivo principal desta dissertação é apresentar, de forma clara, uma demonstração do teorema de Moran --- o qual nos garante que, se F é o atrator de um IFS cujas contrações sejam similaridades que satisfaçam a Condição de Conjunto Aberto (OSC), então a dimensão de similaridade de F coincide com sua dimensão Hausdorff. O presente trabalho é uma contribuição ao estudo da Geometria Fractal do ponto de vista topológico e dinâmico. Embora a Geometria Fractal e a Dinâmica Caótica sejam tradicionalmente estudadas de forma independente, em 2014, Barnsley mostrou a presença de caos nos fractais. Neste trabalho, apresentamos um resultado que relaciona dinâmica caótica e fractais. Mais especificamente, provamos que a transformação de mudança associada a um IFS totalmente desconexo composto por duas ou mais transformações é caótica segundo a definição de Devaney.