Grupo de renormalização e resultados exatos em modelos Z (N) unidimensionais

Detalhes bibliográficos
Ano de defesa: 1981
Autor(a) principal: Cressoni, Jose Carlos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/54/54131/tde-03062014-171206/
Resumo: O comportamento critico de sistemas unidimensionais de spin do tipo Z(N) na ausência de campos magnéticos, é estudado sob a luz da teoria do grupo de renormalização. Os modelos são resolvidos exatamente pelo método da matriz de transferência e expressões para as funções de correlação e susceptibilidade (a campo zero) por si tio são também calculadas. As transformações do grupo de renormalização são efetuadas através de um traço parcial na função de partição, obtendo- se um conjunto de relações de recorrência que podem ser escritas de maneira simples para qualquer valor inteiro do fator de reescala espacial, mediante o uso de campos de escala convenientes. Tirando vantagem de um ponto fixo inteiramente atrativo, calculamos uma expressão para a energia livre por sitio, exata para T ¢ O. Analisamos o comportamento de nossos modelos no espaço de parâmetros, onde identificamos em particular as ~s ferro e antiferromagnéticas. O problema de correções às previsões de escala em termos de campos de escala não lineares é discutido. Aventamos também a possibilidade de calcular os auto valores da matriz de transferência através dos campos não lineares