Propriedades geométricas do grupo de renormalização em redes hierárquicas.

Detalhes bibliográficos
Ano de defesa: 1988
Autor(a) principal: Bosco, Francisco de Assis Ribas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/54/54131/tde-30042009-101638/
Resumo: Neste trabalho estudamos o comportamento crítico do modelo de Potts p-estados na árvore de Cayley, através das propriedades do conjunto de zeros de Yang-Lee da função de partição. Tratando a transformação do grupo de renormalização como um mapeamento racional na esfera de Riemann utiliza-se alguns resultados da teoria de Julia e Fatou para obter-se uma descrição geométrica do comportamento crítico do modelo. Mostra-se de que forma o conjunto de zeros de Yang-Lee se relaciona com o conjunto de Julia do mapa do grupo de renormalização, e calculam-se alguns parâmetros geométricos desse conjunto que descrevem o comportamento não universal do modelo.