Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Chaparro Moreno, Sergio Andrés |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3140/tde-18082014-121213/
|
Resumo: |
O objetivo desta dissertação é propor o projeto de amplificadores de baixo rudo (LNAs) do tipo banda estreita e banda larga em tecnologia CMOS. O projeto de LNAs de banda estreita é representado através de um método de otimização conhecido como programação geométrica. Também, neste trabalho foi projetada uma topologia para LNAs de banda larga, aplicando a programação geométrica durante a fase inicial de projeto. Os layouts de ambos os circuitos foram desenhados e fabricados usando três processos CMOS diferentes. O aumento da utilização de circuitos digitais está reduzindo e substituindo a quantidade de circuitos analógicos implementados nos sistemas atuais. Nos transceptores de radiofrequência, a maior parte dos circuitos foi substituída por circuitos digitais equivalentes. A razão para esta substituição é devido a sua escalabilidade, variações PVT (Process, Voltage and Temperature) baixas, e menor tempo de projeto, resultado de um fluxo altamente automatizado. A redução do tempo de projeto representa um time-to-market menor e custos mais baixos. No entanto, o amplificador de baixo rudo é um dos blocos de radiofrequência que permanecem principalmente no domínio analógico, tornando a redução do tempo de projeto mediante a otimização do fluxo analógico como um bom foco de estudo. O LNA deve ser capaz de receber um sinal de baixa potência e alta frequência, e amplificá-lo adicionando o menor rudo possível, mantendo o casamento de impedâncias, baixo consumo de potência, e uma linearidade adequada a fim de evitar a distorção. Nesta dissertação, a maioria das especificações de desempenho citadas são formuladas rigorosamente e descritas como um programa geométrico. Além disso, vários scripts são escritos de forma a automatizar o fluxo de projeto. A programação geométrica é considerada como uma boa opção porque se o problema de otimização tem solução, o resultado é o ponto de otimização global, e pode ser atingido rapidamente (na ordem de segundos). Para um LNA fonte comum de banda estreita, o problema de projeto é completamente formulado como um programa geométrico, e alguns parâmetros normalmente desprezados, como as não idealidades dos indutores CMOS e a capacitância portadreno do transistor MOS são considerados no projeto. O problema de otimização é resolvido em minutos e testado em cinco processos CMOS diferentes, e para diferentes frequências de operação entre 1,5 GHz e 5 GHz. Os resultados são comparados e validados através de simulações, e dois layouts de LNAs para 2,45 GHz foram desenhados, fabricados e testados usando dois processos de 0,18 mm diferentes. Neste trabalho, também foi formulado um LNA de banda larga com cancelamento de rudo, e um bloco LNA-Misturador de banda larga é projetado incluindo a programação geométrica no cálculo da impedância de entrada e o cancelamento de rudo. Os layouts de dois protótipos diferentes do bloco LNA-Misturador de banda larga, operando na faixa de frequência entre 1 GHz e 5 GHz, foram desenhados e fabricados usando um processo de 0,18 mm. |