Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Antunes, Marcela Prince |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-22122023-103153/
|
Resumo: |
O Transtorno do Espectro Autista (TEA) é um transtorno do neurodesenvolvimento que tem sido a cada dia mais diagnosticado em crianças. Os sintomas são comumente percebidos na infância e incluem prejuízos na comunicação e interação social. A antecipação do diagnóstico para antes do aparecimento dos sintomas permitiria que diferentes terapias fossem iniciadas sem que houvesse comprometimento no desenvolvimento da criança. Por isso, diversas pesquisas têm utilizado eletroencefalografia (EEG) para compreender e detectar o TEA, além de sugerir intervenções para indivíduos com TEA. Considerando este cenário, este trabalho executou diversos experimentos utilizando técnicas de aprendizado de máquina para identificar automaticamente o TEA a partir de registros de EEG obtidos de crianças com idades de 3 a 14 meses. Os resultados apontaram acurácia, especificidade e sensitividade acima de 95% com Máquina de Vetores de Suporte (SVM) associada à Eliminação Recursiva de Características com Validação Cruzada (RFECV), mostrando a possibilidade de detecção do TEA já a partir dos 3 meses. |