Resumo: |
Aproveitando o extenso ferramentário técnico de físicos, a econofísica é um campo de estudo que deseja entender fenômenos econômicos utilizando este conhecimento. Desde abordagens mais simples, como o modelo padrão de finanças, que considera o retorno de um ativo uma variável aleatória, até em propostas mais sofisticadas, como a volatilidade estocástica, que considera que a volatilidade de um ativo financeiro também será uma variável aleatória, objeto de estudo deste trabalho por meio do modelo de Heston.1 Nesta dissertação, estudo se é possível reproduzir a equação diferencial estocástica do modelo de Heston, por meio de amostras dos processos estocásticos de retorno e volatilidade, utilizando redes neurais para aproximar as funções a(X, t) e b(X, t), termo determinístico e de ruído da equação. O processo de otimização das redes neurais ocorre por meio do método do estado adjunto, que auxilia no cálculo do gradiente. Os processos estocásticos resultantes deste gerador encontram-se nas últimas figuras deste trabalho, sendo possível observar a dinâmica do retorno financeiro de um ativo está, visualmente bem representada, exceto pelo caráter oscilatório observado no modelo original de Heston. Para a volatilidade, observamos que este gerador não é capaz de reproduzir sua dinâmica de maneira satisfatória, sendo um indicador de que o modelo de volatilidade estocástica não será o mais adequado para esta nova abordagem. Para realizar uma análise mais robusta, emprego uma aproximação para a estimação dos parâmetros relevantes ao modelo de Heston para a equação geradora e comparo com a amostra original dada para a realização deste processo, onde é possível observar que há grande diferença entre as distribuições resultantes para os parâmetros relacionados a volatilidade, sendo mais um indicador que corrobora a necessidade de modelos mais sofisticados que possam ser representados fielmente pela equação geradora estudada neste trabalho. |
---|