Volumes, areas and other Falconer-type problems

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Silva, Belmiro Galo da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06012023-195933/
Resumo: In this thesis, we investigate the Falconer-type problems about point configurations and in different dimensions. It is well-known the concept of the Hausdorff measure is a generalization of the Lebesgue measure and the Falconer distance problem aims to relate these two topics when it asks how large does the Hausdorff dimension of a compact set need to be to ensure the Lebesgue measure of the distance set. In the first moment, we consider a k-point configurations in Rd and we prove that a compact set E EUR Rd determines a positive measure of such volume types if the Hausdorff dimension of E is greater than d d1 2kd generalizing some results in this field. This portion of the work represents joint work with Dr. Alex McDonald. In the second moment, we study a Falconer-type problem on a 4-point configuration in the plane and we prove that a compact set E EUR R2 determines a positive measure of such Galo area types if the Hausdorff dimension of E is greater than 3 2 extending some results from A. McDonald in [22].