Aplicação do campo elétrico em dímeros de água

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Toledo, Evelyn Jeniffer de Lima
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/75/75131/tde-25102011-171500/
Resumo: A água, conhecida como solvente universal, participa da maioria das reações químicas e composições biológicas, tem importância vital em nosso planeta, tornando a vida como conhecemos inconcebível sem a sua presença. Tais propriedades advêm da forma como as moléculas interagem entre si, e a principal ligação química existente é a ligação de hidrogênio. Portanto, compreender como ela acontece e ser capaz de manipulá-la pode ser considerada uma importante técnica na busca de novos comportamentos. Esta dissertação visa compreender como o campo elétrico nas suas variantes: direção, sentido e intensidade podem afetar a água. Sendo tal estudo realizado através de cálculos utilizando métodos de química quântica: Teoria do Funcional da Densidade e a Teoria de Perturbação Moller-Plesset de segunda ordem. Como resultado obteve-se que quando o campo elétrico é aplicado em uma direção e sentido fora do plano da ligação de hidrogênio, a estrutura inicial tende a se rearranjar produzindo uma estrutura mais fracamente ligada do que a ordinária. Quando aplicamos o campo no plano da ligação de hidrogênio, temos resultados mais pronunciados, sendo que, se o sentido for : Doador -> Receptor a estrutura resultante estará mais fracamente ligada e se o sentido for Receptor -> Doador a estrutura produzida estará mais fortemente ligada. Os resultados obtidos mostram também que tais mudanças acontecem principalmente devido a alterações eletrostáticas, como mudança na densidade de carga da ligação de hidrogênio. Também confirmou-se um ponto crítico no campo 0,15 V/Å, como sugerido na literatura. Esta singularidade foi atribuída neste trabalho à uma transição estrutural. O campo também modificou a importância das interações secundárias, principalmente entre os átomos de oxigênio, e ao desligá-lo, o sistema tende a voltar ao estado inicial.