Desenvolvimento de um sistema de detecção e rastreamentode veículos para análise de anomalias de tráfego em rodovias utilizando estruturas espaciais e temporais por meio de Visão Computacional

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Reyna, Ana Rosalia Huaman
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-05032024-155020/
Resumo: Atualmente, existem sistemas de visão computacional que nos auxiliam em tarefas que seriam maçantes para o ser humano, como vigilância e rastreamento de veículos. Uma parte essencial desta análise é identificar anomalias de tráfego. Uma anomalia nos diz que algo incomum aconteceu, neste caso, na rodovia. Este projeto tem como objetivo modelar a detecção e o rastreamento de veículos usando visão computacional para detectar anomalias de tráfego nas estradas. Para o desenvolvimento deste trabalho, seguimos as etapas de detecção, rastreamento e análise de tráfego: a detecção de veículos a partir de vídeos de tráfego urbano, o rastreamento de veículos utilizando um gráfico bipartido e o algoritmo Convex Hull para delimitar áreas móveis. Finalmente, para detecção de anomalias, utilizamos duas estruturas de dados para detectar o início e o fim da anomalia. A primeira é o QuadTree, que agrupa veículos que ficam muito tempo parados na estrada. A segunda abordagem trata de veículos que estão obstruídos. Os resultados experimentais mostram que nosso método é aceitável no conjunto de testes Track 4, com uma pontuação F1 de 85,7% e um erro quadrático médio de 25,432 segundos.