Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Barcellos, Pablo Roberlan Manke |
Orientador(a): |
Scharcanski, Jacob |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/90448
|
Resumo: |
Este trabalho apresenta um novo método para o rastreamento e contagem de veículos em vídeos de tráfego urbano. Usando técnicas de processamento de imagens e de agrupamentos de partículas, o método proposto usa coerência de movimento e coerência espacial para agrupar partículas, de modo que cada grupo represente veículos nas sequências de vídeo. Uma máscara contendo os objetos do primeiro plano é criada usando os métodos Gaussian Mixture Model e Motion Energy Images para determinar os locais onde as partículas devem ser geradas, e as regiões convexas dos agrupamentos são então analisadas para verificar se correspondem a um veículo. Esta análise leva em consideração a forma convexa dos grupos de partículas (objetos) e a máscara de foreground para realizar a fusão ou divisão dos agrupamentos obtidos. Depois que um veículo é identificado, ele é rastreado utilizando similaridade de histogramas de cor em janelas centradas nas partículas dos agrupamentos. A contagem de veículos acontece em laços virtuais definidos pelo usuário, através da interseção dos veículos rastreados com os laços virtuais. Testes foram realizados utilizando seis diferentes vídeos de tráfego, em um total de 80000 quadros. Os resultados foram comparados com métodos semelhantes disponíveis na literatura, fornecendo, resultados equivalentes ou superiores. |