Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Lima, Pedro Antonio Sá Barreto de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/96/96131/tde-24092021-154707/
|
Resumo: |
This paper is an empirical exercise of forecasting for a class of credit derivatives known as sovereign credit default swaps. Utilizing non-linear and non-parametric machine learning techniques termed Deep Learning, this study was made utilizing daily emerging country data and a set of financial and macroeconomic indicators as features. The non-linear nature of the financial derivative studied here suggests that this novel technique can better capture data behavior compared to a baseline random walk model. A Grid Search Cross-validation is conducted to estimate the hyperparameters of the model. To evaluate the predictive out of sample forecasting is utilized deterministic and statistical metrics concluding that there is a predictive gain utilizing this technique. |