Blocos de consenso, esquemas regenerativos e estimação em tempo polinomial de longas amostras de cadeias de Markov ocultas

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Camey, Suzi Alves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-142747/
Resumo: Esta tese propõe duas abordagens para estimar a seqüência oculta de uma cadeia de Markov oculta: blocos de consenso e blocos de regeneração. Em ambos os casos os algoritmos resultantes dependem de um número de operações que cresce polinomialmente com o tamanho da seqüência. Na primeira abordagem, quebramos a seqüência visível em blocos e estimamos a seqüência oculta de acordo com a maioria de símboos que enxergamos na seqüência visível. Na segunda abordagem, utilizamos a estrutura regenerativa da cadeia para decompor em edois blocos independentes. Obtivemos limites superiores para a probabilidade de erro de estimação com os dois métodos. Na segunda abordagem, utilizamos o método de Monte Carlo markoviano e o algoritmo de Metrópolis para construir iterativamente a seqüência de instantes de regeneração e os blocos correspondentes de estados ocultos, dada a seqüência visível da cadeia. Na demonstração dos resultados foram utilizados resultados de esquemas regenerativos, o método de Chernoff e a desigualdade de Hoeffding. Esta tese tem também uma componente computacional. Com efeito, desenvolvemos rotinas em R que implementam os diversos algoritmos propostos. Também fizemos simulações que ilustram a funcionalidade dos algoritmos.