Machine learning applied to ship maneuvering simulations.

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Moreno, Felipe Marino
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3152/tde-18052021-142324/
Resumo: With the increase of computational power, ship maneuvering simulations have become an important tool to improve the safety of the operations carried at the sea. In this context, one of the most important categories of simulations made by the Numerical Offshore Tank (TPN-USP) is the Real-Time simulations, carried out in a Virtual Reality environment at the same time scale as a real maneuver. These simulations are used to evaluate maritime maneuvers\' risks and viability, but since they take a long time, only a few can be made per day. This work focuses on applying machine learning to create a tool for the TPN-USP maritime simulator that will be used to choose environmental conditions of wind, currents, local sea waves and swell for these simulations.