Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Pellicer, Lucas Francisco Amaral Orosco |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3139/tde-31032021-163248/
|
Resumo: |
Obter bons desempenhos de modelos de aprendizado de máquina geralmente requer que os hiperparâmetros sejam ajustados. Entretanto, é complicado encontrar uma função matemática bem definida entre os valores do hiperparâmetro e o desempenho do modelo. A coleta de valores de desempenho do modelo é cara e ainda o comportamento das funções de desempenho tende a ser imprevisível, com muitas regiões de oscilação ou mesmo regiões descontínuas. Além disso os hiperparâmetros podem ser contínuos, discretos, categóricos ou condicionais, o que torna o problema de ajuste de hiperparâmetros complexo. Muitas técnicas foram desenvolvidas para solucionar esse problema. Neste trabalho, é apresentada a técnica BarySearch: um método livre de derivação com baixo custo computacional. Essa técnica apresenta um bom compromisso entre resultado e esforço de execução. O BarySearch utiliza do método do baricentro já utilizado em sintonização de controladores. O método apresenta características de convergências interessantes e pode comportar similar a um gradiente descendente ou métodos evolucionários sob suposições razoáveis. |