Model selection for learning boolean hypothesis

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Castro, Joel Edu Sanchez
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-02042019-231050/
Resumo: The state of the art in machine learning of Boolean functions is to learn a hypothesis h, which is similar to a target hypothesis f, using a training sample of size N and a family of a priori models in a given hypothesis set H, such that h must belong to some model in this family. An important characteristic in learning is that h should also predict outcome values of f for previously unseen data, so the learning algorithm should minimize the generalization error which is the discrepancy measure between outcome values of f and h. The method proposed in this thesis learns family of models compatible with training samples of size N. Taking into account that generalizations are performed through equivalence classes in the Boolean function domain, the search space for finding the correct model is the projection of H in all possible partitions of the domain. This projection can be seen as a model lattice which is anti-isomorphic to the partition lattice and also has the property that for every chain in the lattice there exists a relation order given by the VC dimension of the models. Hence, we propose a model selector that uses the model lattice for selecting the best model with VC dimension compatible to a training sample of size N, which is closely related to the classical sample complexity theorem. Moreover, this model selector generalizes a set of learning methods in the literature (i.e, it unifies methods such as: the feature selection problem, multiresolution representation and decision tree representation) using models generated from a subset of partitions of the partition space. Furthermore, considering as measure associated to the models the estimated error of the learned hypothesis, the chains in the lattice present the so-called U-curve phenomenon. Therefore, we can use U-curve search algorithms in the model lattice to select the best models and, consequently, the corresponding VC dimension. However, this new generation of learning algorithms requires an increment of computational power. In order to face this problem, we introduce a stochastic U-curve algorithm to work on bigger lattices. Stochastic search algorithms do not guarantee finding optimal solutions, but maximize the mean quality of the solution for a given amount of computational power. The contribution of this thesis advances both the state of the art in machine learning theory and in practical problem solutions in learning.