Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Feitosa, Ricardo Alves |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/100/100131/tde-14062018-225835/
|
Resumo: |
Sistemas de análise de gestos têm se destacado por suas contribuições para a interação entre humanos, humanos e máquinas, e humanos e ambiente. Nessa interação, a gesticulação natural é vista como parte do sistema linguístico que suporta a comunicação, e qualquer sistema de informação que objetiva usar interação para suporte à decisão deveria ser capaz de interpretá-la. Essa interpretação pode ser realizada por meio da segmentação das fases do gesto. Para resolver essa tarefa, o estabelecimento de uma representação de dados eficiente para os gestos é um ponto crítico. A representação escolhida e sua associação a técnicas de análise podem ou não favorecer a solução sob implementação. Neste trabalho, formas de representação de gestos são submetidas aos algoritmos de reconhecimento de padrões MLP e SOM para elaborar um ambiente propício à identificação das representações mais discriminantes, quais aspectos as diferentes representações descrevem com eficiência, e como elas podem ser combinadas para melhorar a segmentação das fases do gesto. Para construção das representações multidimensionais são usados aspectos espaciais e temporais combinados com a normalização dos dados e a aplicação do filtro wavelet na busca pela representação mais discriminante para o reconhecimento das fases do gesto. Ambos os algoritmos alcançaram bons resultados com o uso dos aspectos temporais. O MLP conseguiu classificar todas as fases do gesto em configurações de representação contendo dados sobre todos os membros monitorados. O SOM apresentou boa capacidade para formar grupos contendo dados de uma mesma fase do gesto mesmo com o uso de poucas características na construção da representação, porém não foi possível identificar a proposta de uma nova fase do gesto com o aprendizado não supervisionado |